Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Cancer Med ; 12(12): 13821-13833, 2023 06.
Article in English | MEDLINE | ID: covidwho-2316539

ABSTRACT

BACKGROUND: Oncological care has been disrupted worldwide during the COVID-19 pandemic. We aimed to quantify the long-term impact of the pandemic on cancer care utilization and to examine how this impact varied by sociodemographic and clinical factors in southwestern China, where the Dynamic Zero-COVID Strategy was implemented. This strategy mainly included lockdowns, stringent testing, and travel restrictions to prevent the spread of COVID-19. METHOD: We identified 859,497 episodes of the utilization of cancer care from electronic medical records between January 1, 2019, and March 31, 2021, from the cancer center of a tertiary hospital serving an estimated population of 8.4 million in southwestern China. Changes in weekly utilization were evaluated via segmented Poisson regression across service categories, stratified by cancer type and sociodemographic factors. RESULTS: A sharp reduction in utilization of in-person cancer services occurred during the first week of the pandemic outbreak in January 2020, followed by a quick rebound in February 2020. Although there were few COVID-19 cases from March 2020 until this analysis, the recovery of most in-person services was slow and remained incomplete as of March 31, 2021. The exceptions were outpatient radiation and surgery, which increased and exceeded pre-pandemic levels, particularly among lung cancer patients; meanwhile, telemedicine utilization increased substantially after the onset of the pandemic. Care disruptions were most prominent for women, rural residents, uninsured, and breast cancer patients. CONCLUSIONS: As of March 2021, despite few COVID-19 cases, the COVID-19 pandemic has had a strong and continuing impact on in-person oncology care utilization in southwestern China under the Dynamic Zero-COVID Strategy. Equitable and timely access to cancer care requires adjustment in strict policies for COVID-19 prevention and control, as well as targeted remedies for the most vulnerable populations during and beyond the pandemic. Future studies should monitor the long-term effects of the COVID-19 pandemic and response strategies on cancer care and outcomes.


Subject(s)
Breast Neoplasms , COVID-19 , Humans , Female , Pandemics/prevention & control , COVID-19/epidemiology , Communicable Disease Control , Patient Acceptance of Health Care , China/epidemiology
2.
Biosensors (Basel) ; 12(1)2021 Dec 29.
Article in English | MEDLINE | ID: covidwho-2276106

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) is still raging all over the world. Hence, the rapid and sensitive screening of the suspected population is in high demand. The nucleocapsid protein (NP) of SARS-CoV-2 has been selected as an ideal marker for viral antigen detection. This study describes a lateral flow immunoassay (LFIA) based on colloidal gold nanoparticles for rapid NP antigen detection, in which sensitivity was improved through copper deposition-induced signal amplification. The detection sensitivity of the developed LFIA for NP antigen detection (using certified reference materials) under the optimized parameters was 0.01 µg/mL and was promoted by three orders of magnitude to 10 pg/mL after copper deposition signal amplification. The LFIA coupled with the copper enhancement technique has many merits such as low cost, high efficiency, and high sensitivity. It provides an effective approach to the rapid screening, diagnosis, and monitoring of the suspected population in the COVID-19 outbreak.


Subject(s)
COVID-19 , Copper , Coronavirus Nucleocapsid Proteins/isolation & purification , Immunoassay , Metal Nanoparticles , Antibodies, Viral , Gold , Humans , Phosphoproteins , SARS-CoV-2 , Sensitivity and Specificity
3.
J Proteome Res ; 22(4): 1009-1023, 2023 04 07.
Article in English | MEDLINE | ID: covidwho-2288822

ABSTRACT

Mass spectrometry (MS)-based blood proteomics is a crucial research focus in identifying disease biomarkers. Blood serum or plasma is the most commonly used sample for such analysis; however, it presents challenges due to the complexity and dynamic range of protein abundance. Despite these difficulties, the development of high-resolution MS instruments has made comprehensive investigation of blood proteomics possible. The evolution of time-of-flight (TOF) or Orbitrap MS instruments has played a significant role in the field of blood proteomics. These instruments are now among the most prominent techniques for blood proteomics due to their sensitivity, selectivity, fast response, and stability. For optimal results, it is necessary to eliminate high-abundance proteins from the blood sample, to maximize the depth coverage of the blood proteomics analysis. This can be achieved through various methods, including commercial kits, chemically synthesized materials, and MS technologies. This paper reviews recent advancements in MS technology and its remarkable applications in biomarker discovery, particularly in the areas of cancer and COVID-19 studies.


Subject(s)
COVID-19 , Proteomics , Humans , Proteomics/methods , Mass Spectrometry/methods , Proteins/chemistry
4.
Talanta ; 258: 124462, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-2276105

ABSTRACT

More than forty antigen testing kits have been approved to response the prevalence of SARS-CoV-2 and its variant strains. However, the approved antigen testing kits are not capable of quantitative detection. Here, we successfully developed a lateral flow immunoassay based on colloidal gold nanoparticles (CGNP-based LFIA) for nucleocapsid (N) protein of SARS-CoV-2 quantitative detection. Delta strain (NMDC60042793) of SARS-CoV-2 have been cultured and analyzed by our developed digital PCR and LFIA methods to explore the relationship between N protein amount and N gene level. It indicated that the linear relationship (y = 47 ×) between N protein molecule number and N gene copy number exhibited very well (R2 = 0.995), the virus titers and N protein amount can be roughly estimated according to nucleic acid testing. Additionally, detection limits (LODs) of nine approved antigen testing kits also have been evaluated according to the Guidelines for the registration review of 2019-nCoV antigen testing reagents. Only three antigen testing kits had LODs as stated in the instructions, the LODs of Kits have been converted into the N gene and N protein levels, according to the established relationships among virus titer vers. N gene and antigen. Results demonstrated that the sensitivity of nucleic acid testing is at least 1835 times higher than that of antigen testing. We expect that the relationship investigation and testing kits evaluation have the important directive significance to precise epidemic prevention.


Subject(s)
COVID-19 , Metal Nanoparticles , Nucleic Acids , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Gold , Nucleocapsid Proteins/genetics , Sensitivity and Specificity
5.
Build Environ ; 230: 110007, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2177025

ABSTRACT

Escalating demands of assessing airborne disease infection risks had been awakened from ongoing pandemics. An inhalation index linked to biomedical characteristics of pathogens (e.g. TCID 50 for coronavirus delta variant) was proposed to quantify human uptake dose. A modified Wells-Riley risk-assessment framework was then developed with enhanced capability of integrating biological and spatiotemporal features of infectious pathogens into assessment. The instantaneous transport characteristics of pathogens were traced by Eulerian-Lagrangian method. Droplets released via speaking and coughing in a conference room with three ventilation strategies were studied to assess occupants' infection risks using this framework. Outcomes revealed that speaking droplets could travel with less distance (0.5 m) than coughing droplets (1 m) due to the frequent interaction between speaking flow and thermal plume. Quantified analysis of inhalation index revealed a higher inhalation possibility of droplets with nuclei size smaller than 5 µ m , and this cut-off size was found sensitive to ventilation. With only 60-second exposure, occupants in the near-field of host started to have considerable infection risks (approximately 20%). This risk was found minimising over distance exponentially. This modified framework demonstrated the systematic analysis of airborne transmission, from quantifying particle inhalation possibility, targeting specific disease's TCID 50 , to ultimate evaluation of infection risks.

6.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2023754

ABSTRACT

Carbohydrate antigen 199 (CA199) is a serum biomarker which has certain value and significance in the diagnosis, prognosis, treatment, and postoperative monitoring of cancer. In this study, a lateral flow immunoassay based on europium (III) polystyrene time-resolved fluorescence microspheres (TRFM-based LFIA), integrated with a portable fluorescence reader, has been successfully establish for rapid and quantitative analysis of CA199 in human serum. Briefly, time-resolved fluorescence microspheres (TRFMs) were conjugated with antibody I (Ab1) against CA199 as detection probes, and antibody II (Ab2) was coated as capture element, and a "TRFMs-Ab1-CA199-Ab2" sandwich format would form when CA199 was detected by the TRFM-based LFIA. Under the optimal parameters, the detection limit of the TRFM-based LFIA for visible quantitation with the help of an ultraviolet light was 4.125 U/mL, which was four times lower than that of LFIA based on gold nanoparticles. Additionally, the fluorescence ratio is well linearly correlated with the CA199 concentration (0.00-66.0 U/mL) and logarithmic concentration (66.0-264.0 U/mL) for quantitative detection. Serum samples from 10 healthy people and 10 liver cancer patients were tested to confirm the performances of the point-of-care application of the TRFM-based LFIA, 20.0 U/mL of CA199 in human serum was defined as the threshold for distinguishing healthy people from liver cancer patients with an accuracy of about 60%. The establishment of TRFM-based LFIA will provide a sensitive, convenient, and efficient technical support for rapid screening of CA199 in cancer diagnosis and prognosis.


Subject(s)
Liver Neoplasms , Metal Nanoparticles , Biomarkers, Tumor , Gold , Humans , Immunoassay , Limit of Detection , Microspheres
7.
Front Pharmacol ; 13: 872785, 2022.
Article in English | MEDLINE | ID: covidwho-1952523

ABSTRACT

The understanding of therapeutic properties is important in drug repositioning and drug discovery. However, chemical or clinical trials are expensive and inefficient to characterize the therapeutic properties of drugs. Recently, artificial intelligence (AI)-assisted algorithms have received extensive attention for discovering the potential therapeutic properties of drugs and speeding up drug development. In this study, we propose a new method based on GraphSAGE and clustering constraints (DRGCC) to investigate the potential therapeutic properties of drugs for drug repositioning. First, the drug structure features and disease symptom features are extracted. Second, the drug-drug interaction network and disease similarity network are constructed according to the drug-gene and disease-gene relationships. Matrix factorization is adopted to extract the clustering features of networks. Then, all the features are fed to the GraphSAGE to predict new associations between existing drugs and diseases. Benchmark comparisons on two different datasets show that our method has reliable predictive performance and outperforms other six competing. We have also conducted case studies on existing drugs and diseases and aimed to predict drugs that may be effective for the novel coronavirus disease 2019 (COVID-19). Among the predicted anti-COVID-19 drug candidates, some drugs are being clinically studied by pharmacologists, and their binding sites to COVID-19-related protein receptors have been found via the molecular docking technology.

8.
J Microbiol Immunol Infect ; 55(3): 387-394, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1899957

ABSTRACT

The Omicron (B.1.1.529) variant was first reported in South Africa and rapidly spread worldwide in early November 2021. This caused panic in various countries, so it is necessary to understand Omicron Variant. This paper summarizes omicron variant-related research achievements. Studies have shown that Omicron Variant contains many mutations that make it more infectious and transmissible. At the same time, immune escape is also caused, resulting in reduced efficacy of existing vaccines, increased risk of reinfection, treatment failure or reduction of monoclonal antibody therapies, and detection failure. However, current data indicate that Omicron Variant causes mild clinical symptoms and few severe cases and deaths. Omicron Variant is valid for a range of nonpharmaceutical interventions against SARS-CoV-2. Improving diagnostic accuracy and enabling timely isolation and treatment of diagnosed cases is also critical to interrupting the spread of omicron variants. COVID-19 vaccine boosters could undoubtedly help control Omicron spread and infection. However, developing a vaccine specific to Omicron Variant is also imminent.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics
9.
Int J Neurosci ; : 1-4, 2022 Apr 03.
Article in English | MEDLINE | ID: covidwho-1774059

ABSTRACT

Background: Transverse myelitis (TM) is a rare, acquired neuro-immunological spinal cord disorder that occurs with rapid onset of motor weakness, sensory deficits with bowel and bladder dysfunction. Patients being treated with immune checkpoint inhibitors (ICIs) for advanced malignancy have a known higher propensity of developing neuro immune complications. With the advent of COVID-19 pandemic there have been reported cases of TM with COVID-19 immunization. The reported infrequency of TM with both of the aforementioned causes makes delineation of the etiology challenging.Methods: We present a patient with metastatic small cell lung cancer (SCLC) on maintenance Atezolizumab immunotherapy who developed longitudinal extensive transverse myelitis (LETM) after administration of second dose of COVID-19 mRNA vaccine one day prior to presenting symptoms of acute paralysis of the lower extremity, sensory loss from chest down with overflow incontinence. A clinical diagnosis of myelopathy was supported by MRI of the spine illustrating enhancing lesions from C7-T7 concerning for LETM.Results: A 5-day course of pulsed methylprednisolone followed by therapeutic plasma exchange for 3 days resulted in only minimal improvement in the neurologic exam with increased strength in his lower extremities while the sensory level remained unchanged.Conclusions: This case demonstrates the complication and symptomatology of TM in the setting of anti-PD-L1 monoclonal antibody with coincidental COVID-19 mRNA vaccine administration. The causal relationship between the vaccine and LETM is difficult to establish. However, the presence of a known inciting factor hints at a possible exaggeration of the existing neuro-inflammatory process.

10.
Biosensors (Basel) ; 12(2)2022 Feb 07.
Article in English | MEDLINE | ID: covidwho-1674496

ABSTRACT

Neutralizing antibody (NAb) is a family of antibodies with special functions, which afford a degree of protection against infection and/or reduce the risk of clinically severe infection. Receptor binding domain (RBD) in the spike protein of SARS-CoV-2, a portion of the S1 subunit, can stimulate the immune system to produce NAb after infection and vaccination. The detection of NAb against SARS-CoV-2 is a simple and direct approach for evaluating a vaccine's effectiveness. In this study, a direct, rapid, and point-of-care bicolor lateral flow immunoassay (LFIA) was developed for NAb against SARS-CoV-2 detection without sample pretreatment, and which was based on the principle of NAb-mediated blockage of the interaction between RBD and angiotensin-converting enzyme 2. In the bicolor LFIA, red and blue latex microspheres (LMs) were used to locate the test and control lines, leading to avoidance of erroneous interpretations of one-colored line results. Under the optimal conditions, NAb against SARS-CoV-2 detection carried out using the bicolor LFIA could be completed within 9 min, and the visible limit of detection was about 48 ng/mL. Thirteen serum samples were analyzed, and the results showed that the NAb levels in three positive serum samples were equal to, or higher than, 736 ng/mL. The LM-based bicolor LFIA allows one-step, rapid, convenient, inexpensive, and user-friendly determination of NAb against SARS-CoV-2 in serum.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , COVID-19/diagnosis , Chromatography, Affinity , Humans , Latex , Microspheres , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
11.
Cell Rep ; 37(4): 109882, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1525720

ABSTRACT

Remdesivir (RDV), a nucleotide analog with broad-spectrum features, has exhibited effectiveness in COVID-19 treatment. However, the precise working mechanism of RDV when targeting the viral RNA-dependent RNA polymerase (RdRP) has not been fully elucidated. Here, we solve a 3.0-Å structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RdRP elongation complex (EC) and assess RDV intervention in polymerase elongation phase. Although RDV could induce an "i+3" delayed termination in meta-stable complexes, only pausing and subsequent elongation are observed in the EC. A comparative investigation using an enterovirus RdRP further confirms similar delayed intervention and demonstrates that steric hindrance of the RDV-characteristic 1'-cyano at the -4 position is responsible for the "i+3" intervention, although two representative Flaviviridae RdRPs do not exhibit similar behavior. A comparison of representative viral RdRP catalytic complex structures indicates that the product RNA backbone encounters highly conserved structural elements, highlighting the broad-spectrum intervention potential of 1'-modified nucleotide analogs in anti-RNA virus drug development.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , RNA-Dependent RNA Polymerase/drug effects , SARS-CoV-2/drug effects , Viral Proteins/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Cryoelectron Microscopy , Humans , RNA, Viral/chemistry , RNA, Viral/drug effects , RNA-Dependent RNA Polymerase/chemistry , SARS-CoV-2/chemistry , Viral Proteins/chemistry , Virus Replication/drug effects , COVID-19 Drug Treatment
12.
Cureus ; 13(10), 2021.
Article in English | EuropePMC | ID: covidwho-1469211

ABSTRACT

The objective of this study is to report EEG findings in both COVID-19 survivors and non-survivors who underwent EEG either due to seizure or encephalopathy. Out of total 1468 COVID-19-positive patients, 19 patients underwent EEG. Eight out of 19 patients had a history of seizure disorder and in the remaining 11 with no prior history of seizures, four had a clinical seizure during their hospital stay. Only one had new-onset complex focal status epilepticus on EEG. Amongst the survivors (13/19), the most common EEG findings were normal followed by mild diffuse slowing. Amongst the non-survivors (6/19), the most common EEG finding was moderate to severe slowing in 50% of the patients. It can be deduced that COVID-19 infection does not increase the propensity of epileptiform discharges on EEG. There is perhaps a trend towards increased risk of new-onset status epilepticus in patients with encephalopathy and focal lesions.

13.
Cureus ; 13(9): e18360, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1468730

ABSTRACT

BACKGROUND: Acute confusional state (ACS) in COVID-19 is shown to be associated with poor clinical outcomes. METHODS: We assessed the impact of ACS - defined as a documented deterioration of mental status from baseline on the alertness and orientation to time, place, and person - on inpatient mortality and the need for intensive care unit (ICU) transfer in inpatient admissions with active COVID-19 infection in a single-center retrospective cohort of inpatient admissions from a designated COVID-19 tertiary care center using an electronic health record system. Furthermore, we developed and validated a neurological history and symptom-based predictive score of developing ACS. RESULTS: Thirty seven out of 245 (15%) patients demonstrated ACS. Nineteen (51%) patients had multifactorial ACS, followed by 11 (30%) patients because of hypoxemia. ACS patients were significantly older (80 [70-85] years vs 50.5 [38-69] years, p < 0.001) and demonstrated more frequent history of dementia (43% vs 9%, p < 0.001) and epilepsy (16% vs 2%, p = 0.001). ACS patients observed significantly higher in-hospital mortality (45.9% vs 1.9%, aOR [adjusted odds ratio]: 15.7, 95% CI = 3.6-68.0, p < 0.001) and need for ICU transfer (64.9% vs 35.1%, aOR: 2.7, 95% CI = 1.2-6.1, p = 0.015). In patients who survived hospitalization, ACS was associated with longer hospital stay (6 [3.5-10.5] days vs 3 [2-7] day, p = 0.012) and numerically longer ICU stay (6 [4-10] days vs 3 [2-6] days, p = 0.078). A score to predict ACS demonstrated 75.68% sensitivity and 81.73% specificity at a cutoff of ≥3. CONCLUSION: A high prevalence of ACS was found in patients with COVID-19 in our study cohort. Patients with ACS demonstrated increased mortality and need for ICU care. An internally validated score to predict ACS demonstrated high sensitivity and specificity in our cohort.

14.
Cureus ; 13(8): e17408, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1406861

ABSTRACT

Neurological manifestations, such as encephalopathy, intracranial neuropathy, headache, and cognitive decline, are often presented in patients with COVID-19 infection. Since the onset of the pandemic, acute ischemic stroke associated with a hypercoagulable state caused by COVID-19 is increasingly being reported. Hemorrhagic stroke is also reported via poorly understood mechanisms. We report one of the first-ever cases of intraparenchymal hemorrhage, subarachnoid hemorrhage secondary to reversible cerebral vasoconstriction syndrome in a patient with COVID-19 infection.

16.
Front Med (Lausanne) ; 8: 691329, 2021.
Article in English | MEDLINE | ID: covidwho-1325539

ABSTRACT

Here we report a critically ill patient who was cured of SARS-CoV-2 infection in Changsha, China. A 66-year-old Chinese woman, with no significant past medical history, developed severe pneumonia-like symptoms and later diagnosed as severe COVID-19 pneumonia. Within 2 months of hospitalization, the patient deteriorated to ARDS including pulmonary edema and SIRS with septic shock. When treatment schemes such as antibiotics plus corticosteroids showed diminished therapeutic value, hUCMSC therapy was compassionately prescribed under the patient's consent of participation. After treatment, there was significant improvement in disease inflammation-related indicators such as IL-4, IL-6, and IL-10. Eventually, it confirmed the therapeutic value that hUCMSCs could dampen the cytokine storm in the critically ill COVID-19 patient and modulated the NK cells. In the continued hUCMSC treatment, gratifying results were achieved in the follow-up of the patient. The data we acquired anticipate a significant therapeutic value of MSC treatment in severe and critically ill patients with COVID-19, while further studies are needed.

17.
Front Immunol ; 12: 651545, 2021.
Article in English | MEDLINE | ID: covidwho-1278391

ABSTRACT

COVID-19 is an acute, complex disorder that was caused by a new ß-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Based on current reports, it was surprising that the characteristics of many patients with COVID-19, who fulfil the Berlin criteria for acute respiratory distress syndrome (ARDS), are not always like those of patients with typical ARDS and can change over time. While the mechanisms of COVID-19-related respiratory dysfunction in COVID-19 have not yet been fully elucidated, pulmonary microvascular thrombosis is speculated to be involved. Considering that thrombosis is highly related to other inflammatory lung diseases, immunothrombosis, a two-way process that links coagulation and inflammation, seems to be involved in the pathophysiology of COVID-19, including respiratory dysfunction. Thus, the current manuscript will describe the proinflammatory milieu in COVID-19, summarize current evidence of thrombosis in COVID-19, and discuss possible interactions between these two.


Subject(s)
COVID-19/immunology , COVID-19/pathology , Inflammation/virology , Respiratory Distress Syndrome/virology , Thrombosis/virology , Humans , Inflammation/immunology , Inflammation/pathology , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology , SARS-CoV-2 , Thrombosis/immunology , Thrombosis/pathology
18.
Am J Chin Med ; 48(6): 1315-1330, 2020.
Article in English | MEDLINE | ID: covidwho-1243726

ABSTRACT

Critical care medicine is a medical specialty engaging the diagnosis and treatment of critically ill patients who have or are likely to have life-threatening organ failure. Sepsis, a life-threatening condition that arises when the body responds to infection, is currently the major cause of death in intensive care units (ICU). Although progress has been made in understanding the pathophysiology of sepsis, many drawbacks in sepsis treatment remains unresolved. For example, antimicrobial resistance, controversial of glucocorticoids use, prolonged duration of ICU care and the subsequent high cost of the treatment. Recent years have witnessed a growing trend of applying traditional Chinese medicine (TCM) in sepsis management. The TCM application emphasizes use of herbal formulation to balance immune responses to infection, which include clearing heat and toxin, promoting blood circulation and removing its stasis, enhancing gastrointestinal function, and strengthening body resistance. In this paper, we will provide an overview of the current status of Chinese herbal formulations, single herbs, and isolated compounds, as an add-on therapy to the standard Western treatment in the sepsis management. With the current trajectory of worldwide pandemic eruption of newly identified Coronavirus Disease-2019 (COVID-19), the adjuvant TCM therapy can be used in the ICU to treat critically ill patients infected with the novel coronavirus.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/therapeutic use , Immunologic Factors/therapeutic use , Medicine, Chinese Traditional , Pneumonia, Viral/drug therapy , Sepsis/drug therapy , Artemisinins/therapeutic use , Astragalus propinquus , Berberine/therapeutic use , Betacoronavirus , COVID-19 , Critical Illness , Emodin/therapeutic use , Humans , Intensive Care Units , Intestinal Mucosa , Microcirculation , Pandemics , Permeability , Rheum , SARS-CoV-2 , Salvia miltiorrhiza , COVID-19 Drug Treatment
19.
Signal Transduct Target Ther ; 6(1): 181, 2021 05 10.
Article in English | MEDLINE | ID: covidwho-1223081

ABSTRACT

Over 40% of the coronavirus disease 2019 (COVID-19) COVID-19 patients were asymptomatically infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the immune responses of these asymptomatic individuals is a critical factor for developing the strategy to contain the COVID-19 pandemic. Here, we determined the viral dynamics and antibody responses among 143 asymptomatic individuals identified in a massive screening of more than 5 million people in eight districts of Wuhan in May 2020. Asymptomatic individuals were admitted to the government-designated centralized sites in accordance with policy. The incidence rate of asymptomatic infection is ~2.92/100,000. These individuals had low viral copy numbers (peaked at 315 copies/mL) and short-lived antibody responses with the estimated diminish time of 69 days. The antibody responses in individuals with persistent SARS-CoV-2 infection is much longer with the estimated diminish time of 257 days. These results imply that the immune responses in the asymptomatic individuals are not potent enough for preventing SARS-CoV-2 re-infection, which has recently been reported in recovered COVID-19 patients. This casts doubt on the efficacy of forming "herd-immunity" through natural SARS-CoV-2 infection and urges for the development of safe and effective vaccines.


Subject(s)
Antibodies, Viral/immunology , Asymptomatic Infections/epidemiology , COVID-19/immunology , Immunity/immunology , Aged , Antibodies, Viral/blood , Antibodies, Viral/genetics , COVID-19/blood , COVID-19/physiopathology , COVID-19/virology , China/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
20.
Sens Actuators B Chem ; 331: 129415, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1009880

ABSTRACT

The coronavirus disease 2019 (COVID-19) epidemic continues to ravage the world. In epidemic control, dealing with a large number of samples is a huge challenge. In this study, a point-of-care test (POCT) system was successfully developed and applied for rapid and accurate detection of immunoglobulin-G and -M against nucleocapsid protein (anti-N IgG/IgM) and receptor-binding domain in spike glycoprotein (anti-S-RBD IgG/IgM) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Any one of the IgG/IgM found in a sample was identified as positive. The POCT system contains colloidal gold-based lateral flow immunoassay test strips, homemade portable reader, and certified reference materials, which detected anti-N and anti-S-RBD IgG/IgM objectively in serum within 15 min. Receiver operating characteristic curve analysis was used to determine the optimal cutoff values, sensitivity, and specificity. It exhibited equal to or better performances than four approved commercial kits. Results of the system and chemiluminescence immunoassay kit detecting 108 suspicious samples had high consistency with kappa coefficient at 0.804 (P < 0.001). Besides, the levels and alterations of the IgG/IgM in an inpatient were primarily investigated by the POCT system. Those results suggested the POCT system possess the potential to contribute to rapid and accurate serological diagnosis and epidemiological survey of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL